
Microcontroller
ENGINEERING REVIEW

Volume 2

Table of Contents

Dial-up networking with
the DS80C400
microcontroller...............1

SRAM-based micro-
controller optimizes
security..........................8

Creating networked
multimedia applications
with the DS80C400.....12

Using the
DS5240/DS5250 as
drop-in upgrades for
the DS500218

Dial-up networking with the
DS80C400 microcontroller
As technology advances, large network availability greatly simplifies the process of microcon-
trollers monitoring and controlling sensors/actuators. Information can now be sent over the net-
work to a central location for analysis and corrective action. For such an application, the
DS80C400 networked microcontroller provides a ready solution. Besides being loaded with
extensive peripherals, the DS80C400 silicon software implements a TCP/IP stack1. The Tiny
InterNet Interfaces (TINI®) platform2, which includes a Java™ Virtual Machine (JVM), pro-
vides extensive support of IP networking. Although the DS80C400 includes an Ethernet inter-
face, the TINI Runtime Environment (TRE) also supports dial-up networking using the point-
to-point protocol (PPP). A compelling aspect of using PPP is that both endpoints of the con-
nection can communicate over modems to leverage public communication networks and IP
software infrastructure. This allows the deployment of remote embedded networking applica-
tions in outposts where an Ethernet network is not available, but the ubiquitous phone switch
network is (Figure 1).

PPP overview

PPP is a general-purpose protocol that supports data transfer over many physical media, includ-
ing (but not limited to) serial, parallel, Ethernet, and cellular phones, such as general packet-radio
service (GPRS) devices. PPP is widely used in dial-up networking application because it requires
little configuration and is easy to set up. The only requirement for the physical media is full-
duplex capability. The communication can be either synchronous or asynchronous.

PPP is composed of three main components:

1) A method for encapsulating multiprotocol datagram over the same link. PPP encapsulation is
based on the high-level data-link control (HDLC) format. Some encapsulation fields can be
compressed if available bandwidth is limited.

2) A link control protocol (LCP) that establishes a connection, configures link options, detects
errors, and terminates the link.

3) A family of network control protocols (NCP) that establish and configure corresponding net-
work-layer protocols.

The DS80C400 net-
worked microcontroller
provides a ready
solution for sending
information over the
network to a central
location for analysis
and corrective action.

PSTN
DS80C400

RS-232
SERIAL

RS-232
SERIAL

PHONE
LINE

PHONE
LINE

MODEM 1 MODEM 2

SERVER

SENSOR/
ACTUATOR

Figure 1. A remote
DS80C400 running the
TINI Runtime Environment
dials up a server to forward
data.

2

PPP operation

The Internet standard RFC 1661 describes PPP operation as a state machine going through dif-
ferent stages as the point-to-point link is configured, maintained, and terminated. Figure 2
describes a simplified state diagram where PPP is divided into five distinct phases: dead, estab-
lish, authenticate, network, and terminate. PPP implements all phases except authenticate.

Link Dead Phase: Initial and ending phase of a link operation. The physical layer is not ready
for packet transfer yet. When the physical layer is ready, an UP event is generated, and PPP pro-
ceeds to the link establishment phase.

Link Establishment Phase: The physical layer is up, and the link is
negotiating transport options with its peer by exchanging LCP con-
figuration packets. Only options independent of the network-layer
protocol are configured at this stage. Once a configure-ACK packet
has been sent and received, the PPP generates an OPENED event and
proceeds to the next stage.

Authentication Phase: An optional phase that authenticates to the
peer. On some links, such as dial-up networking, it is desirable for
the link to authenticate before network-layer protocol packets can be
exchanged. For such an implementation, a request for authentication
must be sent during the link establishment phase.

Network-Layer Protocol Phase: After the link has been established and authentication has suc-
ceeded, the network-layer protocol is configured by exchanging NCP packets specific to the net-
work layer supported. Each network-layer protocol has a unique NCP and must be negotiated
separately.

Link Termination Phase: A CLOSE event is generated when the PPP link is terminated because
of carrier loss, authentication failure, link-quality failure, or the administrative closing of the link.
LCP terminate packets are exchanged between peers. The network-layer protocol is informed of the
closing link and takes appropriate action. The physical layer is disabled after receiving a terminate-
ACK, or timeout. A DOWN event is then generated, and the PPP returns to the link dead phase.

TINI PPP

TINI uses RFC 1661 as a framework for PPP implementation. PPP serves strictly as a transport
mechanism for IP datagrams over a serial link. In the native network stack, PPP exists below the
IP module and above the serial port drivers. To alleviate programming complexity, the PPP stages
are simplified further (Figure 3).

PPP is explained to an application developer through Java classes in the
com.dalsemi.tininet.ppp package. The PPP states are event driven.
ppp.up() establishes the link, authenticates, and sets up the network proto-
col. Password-authentication protocol (PAP) and challenge-handshake-authen-
tication protocol (CHAP) are supported.3 Once the link is configured, an UP
event is generated and adds the PPP interface to the network stack so network
traffic can be directed to that interface. ppp.close() issues a CLOSE event,
brings the link down, and returns to the dead/terminate state.

Example 1 shows fragments of a PPPClient implemented on the DS80C400. (Go to
www.ibutton.com and search for PPP for the latest example.) After a PPP object is created, the
PPPClient is installed as the PPP object’s PPPEventListener. PPP parameters are set,
and the link is initiated with a series of atCommand. Once the link is established, ppp.up()
is called to notify the network stack that PPP is now available for network traffic. The link is ter-
minated with ppp.close().

Figure 3. This TINI PPP
phase diagram illustrates
how PPP is implemented
on TINI.

PPP supports data
transfer over many
physical media, includ-
ing serial, parallel,
Ethernet, and cellular
phones, such as
general packet-radio
service (GPRS) devices.

NETWORK

CLOSE

SUCCESSAUTHENTICATE

TERMINATE
DOWN

DEAD

ESTABLISH
OPENED

FAILFAIL UP

AUTHENTICATE
UP

ppp.addInterface()

NETWORK

DEAD
TERMINATE

FAIL ppp.up()

CLOSED
ppp.close()

ESTABLISH

Figure 2. This simplified
phase diagram illustrates
PPP implementation
described in RFC 1661.

3

Example 1. PPPClient implementation

public class PPPClient extends Thread
implements PPPEventListener, CommPortOwnershipListener{
…
public void run(){

ppp = new PPP();
openSerialPort(portNumber);
// Add this object as a PPP event listener
ppp.addEventListener(this);
// Set the local and remote IP address
ppp.setLocalAddress(localAddress);
ppp.setRemoteAddress(remoteAddress);
// Set client peer type options
// Set the ACCM to escape all octets
ppp.setRemoteAccm(0x00000000);
ppp.setLocalAccm(0x00000000);
ppp.setAuthenticate(false, true);
// Set username and password
ppp.setUsername(username);
ppp.setPassword(password);
// Initialize modem
for (int i = 0; i < dialSequence.length; ++i)

atCommand(dialSequence[i]);
// Set connected flag
connected = true;
// Issue up command to PPP FSM
ppp.up(serialPort);

// PPP connection is now established, we can now
// communicate with remote host
sendData();
ppp.close();
closeSerialPort();

}
…

}

Example 2 demonstrates how a PPPEvent can be handled. Once the link is ready, and the UP
event has been received, PPP is added as one of the network interfaces so IP packets can be for-
warded to this interface. Whenever a CLOSE event is received, the network stack removes the
PPP interface, terminating any network activity through PPP.

Example 2. PPPEvent method

/**
* PPP event listener interface
*/

public void pppEvent(PPPEvent ev){

switch (ev.getEventType()){
case PPPEvent.UP:

// PPP connection is up
ppp.addInterface(interfaceName);
interfaceActive = true;
break;

case PPPEvent.CLOSED:
// PPP connection is closed

The TINI Runtime
Environment provides
user-friendly APIs that
conceal details so devel-
opers can concentrate
on their designs, using
PPP as a utility. Even
without a traditional
phone network, the
same applications can
still run by replacing
the modem with a
GPRS wireless phone.

4

if (interfaceActive){
interfaceActive = false;
ppp.removeInterface(interfaceName);

}
connected = false;
break;

default:
break;

}
}

Remote humidity data-logger example

In this article we write a powerful, networked application that takes full advantage of networking
capabilities provided by a very economical, small form-factor computer. The example uses a TINI ref-
erence design called the TINIm400-030p, OEM Stamp+ Edition. This module provides a low-power,
I/O-rich, low-part-count embedded controller and data collection module. When combined with the
TRE, robust networked data-collection systems require minimal software effort. The Stamp+ module
includes flash ROM, RAM, a real-time clock, 1-Wire® network, parallel I/O, and asynchronous
serial ports. Intended for remote dial-up applications, this particular design does not use the
Ethernet interface, although adding an Ethernet PHY and associated magnets would enable one.

This article presents a complete example4 that captures and logs data, connects over the PSTN
(public switched-telephone network) using PPP to manage dial-up connections, and makes the
data available to a remote server. Dial-up networking support makes the data logger truly remote.

System overview

Figure 4 shows the setup for demonstrating dial-up networking capabilities using analog modems.
If phone lines or their equivalent are not available, the hardwired serial-to-serial connection can
also be used in a test setup.

The test configuration in Figure 4 includes the following equipment:

• A PPP module—running the DataLogger server

• A Windows® 2000 machine—running the DataLoggerServer software

• Two analog modems—one attached to the
Win2K PC and the other attached to the
serial port of the PPP module

• A humidity sensing circuit—collecting
humidity data for logging

The DS80C400 on the Stamp+ module has
the TRE installed. The TRE platform sup-
ports ASM, C, and Java programming. The
embedded firmware implements TCP/IP
stack and provides framework for the PPP
protocol. The term “TINI,” which gives the
Stamp+ module its remote data-logger
capability, is used interchangeably with the
term “Stamp+ module.”

The PPP connection is made using two analog modems on either side of a phone line simulator.
If two different phone lines are available, the public phone network can be used instead. To test

TINIm400-030p (DataLogger)
192.168.1.2

WIN2K (DataLoggerServer)
192.168.1.1

1-WIRE NET

PHONE CABLE PHONE CABLE

AT MODEM 2AT MODEM 1

HUMIDITY
SENSOR

RS-232
SERIAL

RS-232
SERIAL

PSTN
(OR PHONE LINE

SIMULATOR)

Figure 4. A remote data-
logging system uses
generic modems to
transfer data.

Application Note 702:
Using TINI Point-To-
Point Protocol (PPP)
shows how TINI can
be set up to use PPP,
providing IP packet
transport over the
serial link. Go to
www.maxim-ic.com/
appnoteindex.

5

the PPP interface, a dial-up network connection should be created. Once the connection is initi-
ated, the following sequence of events occurs:

1) TINI modem dials the server’s modem.

2) The server’s modem answers the incoming call.

3) PPP option negotiation begins.

4) Authentication information is transmitted from TINI to the remote server.

5) The server assigns an IP address to the TINI and notifies
the TINI of the server’s address.

Software and hardware overview

Complete source code can be downloaded from ftp://ftp. dalse-
mi.com/pub/tini/reference_designs/TINIm400-030p/
DataLogger.zip. Figure 5 shows humidity data is collected
using a sensor circuit. The example sensor uses a DS1922H*
1-Wire temperature/humidity sensor packaged as an iButton®,
although any 1-Wire device can be used with the DS80C400.

TINI client software

The TINI DataLogger example demonstrates three con-
cepts: 1-Wire networking, serial communications, and
TCP/IP networking. Brief functionality descriptions of the
most important classes are summarized below.

The DataLogger class

• Retrieves parameters from the configuration file
/etc/dataLogger.properties

• Creates an instance of HumidityLogger to capture sample

• Creates an instance of PPPDaemon to manage PPP connection

• Initiates outbound connections to the remote server over the network interface such as
Ethernet or PPP

The HumiditySensor class

• Handles communication with, and retrieves data from the DS1922H

The HumidityLogger class

• Initializes and manages humidity sensors

• Writes log data to the output stream to the server

The PPPDaemon class

• Dial-up client

• Establishes TCP/IP connections using a PPP interface

• Manages the physical data link

• Receives PPP event notification

Figure 5. A TINIm400-030p
data logger collects humidity
data using a sensor.

HAYES COMPATIBLE
MODEM

TINIm400-030p OEM STAMP+

DS1672
(RTC)

DS80C400
NETWORKED

MICROCONTROLLERDS2502
(MAC

ADDRESS)

DS3241
(RS-232)

DS1922H
HUMIDITY
SENSOR

AC
ADAPTER

AA x 3
BATTERY

(UNINTERRUPTIBLE
POWER SUPPLY)

RAM

FLASH

+5VDC

I2C

1-WIRE

J1-6
J2

J1-5 J1-4

1-
W

IR
E

+4.5VDC

LDO
REGULATOR

For a detailed descrip-
tion of 1-Wire networks,
refer to Application Note
148: Guidelines for
Reliable 1-Wire Net-
works and Technical
Brief 1: 1-Wire Net
Design Guide, available
at www.maxim-ic.com/
appnoteindex.

*Future product—contact factory for availability.

6

• Notifies DataLogger of errors that occur in the physical data link

The PPPSerialLink class

• Implements the PPPDataLink interface

• Allows PPPDaemon to manage the data link

• Configures the serial port for the data link

The PPPModemLink class

• Subclass of PPPSerialLink

• Manages modem communications

• Monitors SerialPortEvent.CD (carrier detect) to detect if the modem hangs up

The ModemCommand class

• Handles serial communication with the modem

• Throws DataLinkException in case of a timeout while waiting for the desired response

Remote data-logging server

The DataLoggerServer is a simple GUI server application developed to accept connection
from TINI and download its current log.

The DataLoggerServer class

• Displays log data

• Blocks on accept to wait for socket connection at PORT

• Builds logs and charts humidity and temperature changes over time

Running the example

Application files traditionally have been transferred to the TINI file system using the FTP
protocol over an Ethernet interface. Because the Stamp+ module does not include an Ethernet
interface, the ymodem file transfer protocol has been added to Slush and JavaKit. Ymodem
allows files to be transferred to the TINI file system over the JavaKit serial link. For more
detailed information about the Stamp+ module, refer to Application Note 611: Dial-Up
Networking with the TINIm400 Stamp. Besides the application file, the DataLogger.tini,
a /etc/.startup file containing the following text should be transferred to the TINI
file system.

#
Starting DataLogger application from .startup file
#
setenv FTPServer disable
setenv TelnetServer disable
setenv SerialServer disable
#
initializeNetwork
#
java /DataLogger.tini

This startup file disables the serial server and allows the data-logger application access to the ser-
ial port. Once the application and startup files have been transferred, resetting the TINI allows
the new startup file to be processed and the data-logger application to be started.

7

The first thing TINI sends to DataLoggerServer is an integer value that tells the server the
number of log entries to expect. After the server reads this value, it loops through all entries,
reading each individual sample. The server displays each entry and logs this information to a file.
The DataLoggerServer is written in Java and requires a Java Runtime Environment for exe-
cution, the same execution environment used to run Slush. See www.java.sun.com for installa-
tion instructions.

After running the DataLogger for several minutes to allow it to acquire a few samples,
DataLoggerServer is run. In this example each sample was time-stamped one minute apart.
If DataLogger runs more than one hour, it fills its sample vector, resulting in 60 (MAX_SAM-
PLE) data samples. If it runs for days, weeks, or even months, it still gets MAX_SAMPLE sam-
ples, but they always represent readings taken within the last hour.

Conclusion

Implementing a dial-up network connection on the DS80C400 is
straightforward. The TINI Runtime Environment provides user-friendly
APIs that conceal details so developers can concentrate on their designs,
using PPP as a utility. Even without a traditional phone network, the
same applications can still run by replacing the modem with a GPRS
wireless phone.

The TINIm400 Stamp can be configured to initiate or receive dial-up
connections. For data logging, a central server can dial into the
TINIm400 Stamp and retrieve data at periodic intervals. In the event
of a local fault, the Stamp module can initiate a PPP dial-up connec-
tion to the central server to notify the system of the error. By using the
TINIm400 to detect local faults, the central server can be dedicated to
analyzing the retrieved data.

As with any embedded module, the hardware and algorithms used
depend on the specific application. The rich I/O capability of the
DS80C400 and flexibility of the TINI Runtime Environment make
adding remote sensors/actuators to networks quick.

TINI, 1-Wire, and iButton are registered trademarks of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.
Windows is a registered trademark of Microsoft Corp.

For a comprehensive list of related application notes, go to
www.maxim-ic.com/appnoteindex.

Figure 6. The PC screen
sample displays the
DataLoggerServer
operation.Footnotes:

1The silicon software supports IPv4/6 over Ethernet.
2Application Note 708: Tiny InterNet Interfaces (TINI)
3TRE Firmware Version 1.1 and later.
4This example is derived from Chapter 7 of The TINI Specification and Developer’s Guide, available

at www.maxim-ic.com/TINIguide.

8

SRAM-based microcontroller
optimizes security
Whether in an automated teller machine, passport/identity verification device, or a point-of-sale ter-
minal at a convenience store, critical information such as passwords, personal identification num-
bers (PINs), encryption keys, and proprietary cryptographic algorithms must be protected against
hackers. Elaborate policies and procedures are employed by financial services to protect both hard-
ware and software. Consequently, designers of financial transaction systems face challenging trade-
offs when developing equipment that processes billions of dollars every year.

To retain trust, a payment system must have end-to-end security. The server at the central bank is
inside a restricted-access building with a fenced perimeter, but remote payment terminals in public
places are easily susceptible to hacker invasion. Although it is possible to surround a microcontroller
with a protective enclosure and wire an ancillary burglar alarm system, a determined assailant can
still defeat the alarm system by turning the power off. Even though an enclosure can be opened, if
the enclosure is coupled with the microcontroller’s tamper-reactive cryptographic boundary, a safe
cocoon for secure information is created. To be truly secure, the payment system architecture must
have tamper-reactive technology built into the chip that employs the trusted computer. In this way
the chip that does the computations defends its cryptographic boundary against intrusion by rapidly
erasing the secret key, program, and data memory1. The most powerful defense a secure microcon-
troller has is erasing memory contents quickly when tampering is detected. The DS5250 secure high-
speed microcontroller is an example that not only erases memory contents, but is also an inexpen-
sive embedded system with SRAM for program and data storage.

Building trust with physical memory

Most embedded systems are developed using general-purpose computers chosen for flexibility and
ease of debugging. But these benefits can become liabilities if they result in security breaches2. A
hacker’s first point of attack typically is the microcontroller’s physical memory, so using optimum
memory technologies for payment terminals is especially critical. Readily available logic analyzers,
such as the Hewlett-Packard model HP16500B, can physically monitor the electrical signals of the
address and data buses, which could reveal the contents of the memory and private data, such as
secret keys. The two most important countermeasures to prevent this eavesdropping are to use strong
cryptography on the memory bus and to choose memory technology for rapid erasure even in the
absence of power. Some embedded systems attempt security by using microcontrollers with internal
floating-gate memory, such as EPROM or flash memory. But the best memory technology erases its
contents, not reveals it. While UV-erasable EPROM does not require electrical power for erasure,
the awkwardness of supplying UV light for minutes increases its vulnerability. Flash or EEPROM
memory requires that the processor remain operational and the supply voltage remain within the
specified operating range to successfully accomplish erasure. These floating-gate-memory tech-
nologies are bad choices for secure applications because they hold their states indefinitely when
power is removed, giving a hacker unlimited time to discover sensitive data. A better approach uses
a memory technology like SRAM that reacts in one of the following ways if power is removed or
the tamper detection circuitry is activated:

• The memory defaults to zeros when power is removed.

• The internal memory and encryption keys are erased in nanoseconds by the tamper detection cir-
cuitry.

• The external memory can be erased under application software control with write times of less
than 100ns.

Some designers might be tempted to overcome the vulnerability of floating-gate memory by includ-
ing the microcontroller on the same chip as the memory. This prevents unauthorized access to its
memory contents. Some implementations use one or more internal lock bits, set as a final step at the

A hacker’s first point of
attack typically is the
microcontroller’s physi-
cal memory, so using
optimum memory tech-
nologies for payment
terminals is especially
critical.

The most powerful
defense a secure micro-
controller has is erasing
memory contents quickly
as a response to
tampering.

9

end of programming. When set, these bits prevent the microcontroller from revealing its contents if
unsoldered from the PC board and placed in a device programmer, such as the widely used BP
Microsystems Model BP-1700 Universal Engineering Programmer. In practice, the only way to
erase the lock bits is by erasing all memory, which allows the device to be reprogrammed but
destroys the program memory contents in the process. Further security attempts include adding an
internal memory encryption array, which encrypts the output of the memory array when a device
programmer attempts to verify or dump its contents. An example of this is found in the Intel MCS®

51 family of processors that use a 64-byte, user-programmed encryption array that XNORs the mem-
ory contents with the encryption array during verification. Unless the user knows the contents of the
encryption array, any information extracted during a verification operation is meaningless. However,
even the lock bit approach can be defeated. Techniques for hacking into floating-gate devices such
as EPROMs, EEPROMs, and flash memories, and selectively erasing the security lock bits are easy
to find in technical journals and Internet news groups3. Some device manufacturers suggest that one-
time-programmable devices in a solid plastic package offer a degree of protection against lock-bit
hacking. “Degree of protection” is a relative term, however. The application of hot acid can dissolve
plastic encapsulation over the die without harming it. Then a careful study of the die lay-
out using a tool such as a simple and inexpensive Karl Suss PM 8 Manual Probe Station
can reveal the location of the security lock bits. This technique is often performed on UV-
erasable EPROMs. After decapsulation, the die is painted with opaque paint or even elec-
trical tape, and pinholes carefully made over the location of the lock bits. Exposing the
device to a strong UV light then erases the security lock bits, yet leaves the main memo-
ry array unaffected. The device can then be read in a standard programmer as though the
lock bits were never set (Figures 1 and 2). This simple procedure is routinely performed
in semiconductor companies to analyze failures.

Another shortcoming of floating-gate memory technology is that the memory cells are
intrinsically nonvolatile, maintaining their contents even if power is removed from the
microcontroller. When power is removed from floating-gate devices, the data’s decay
time is rated in hundreds of years. This lapse in time is a problem when long-term pro-
tection of private keys is required for private-key-infrastructure (PKI)-based systems4, as
it gives a hacker unlimited time to breach physical defenses in the chip and access the
memory before the device executes a tamper response.

SRAM and speed

All secure applications require fast read/write cycle times for the highest level of protec-
tion. SRAM is the fastest of all memory technologies. It can be instantaneously erased or
“zeroed” as part of a tamper response. Additionally, SRAM is widely available, reason-
able priced, and has unique features for secure data storage4. Although intrinsically
volatile, it can easily be made nonvolatile for more than 10 years in the absence of VCC
using a lithium backup, which can also power a real-time clock for time stamping and dat-
ing transactions. These features are not possible with floating-gate-memory technologies.

Authenticating the transaction

The PINpad module of today’s payment terminals provides the core trust for financial
payment systems. This module, regulated by banking authorities and credit card issuers,
requires a secure microcontroller with resident software that includes device drivers for
keypads, magnetic stripe card readers, smart card readers, and LCD displays. There must
also be some method of high-speed serial communication to a general-purpose host (PC,
486, ARM) as well as PKI cryptography routines for secure end-to-end communication.
The memory footprint of the PINpad module microcontroller can be hundreds of kBytes
and exceed the economical size of a single chip, so external memories are needed. As previously
mentioned, external memory is vulnerable to eavesdropping unless the communications between the
microcontroller and external memory use strong cryptography. Such an encryption scheme has sev-
eral requirements that build on each other:

Figure 2. The same micro-
controller has its EPROM
array covered, leaving
security lock bits exposed
for easy erasure.

Figure 1. Microcontroller
die showing exposed
EPROM after acid
decapsulation.

Floating-gate-memory
technologies are bad
choices for secure appli-
cations because they
hold their states indefi-
nitely when power is
removed, giving a
hacker unlimited time to
discover sensitive data.
A better approach uses
a memory technology
like SRAM.

MCS is a registered trademark of Intel Corporation.

10

• Encryption/decryption must occur at a rate comparable to instruction execution. Cryptographic
operation must be performed on each program fetch or a small group of bytes if using block
encryption such as data encryption standard (DES). The cryptographic algorithm must be strong,
fast, and hardware-based. A superior solution is a triple DES (3DES) using dedicated on-chip
3DES hardware, which executes much faster than multiple passes through a single DES encryptor.

• External memory must be SRAM to support the high data transfer rates required by the crypto-
graphic engine. Battery-backed SRAM is also required so that memory can be quickly erased
when tampering is detected.

• Data crucial to the cryptographic operation such as encryption keys should never be seen outside
the processor. The processor must generate and securely store at least some part of the encryption
keys. These keys are erased as part of the tamper response, rendering the external memory unin-
telligible.

• Initial loading and encryption of program and data must be done by a bootloader internal to the
microprocessor. This prevents unauthorized viewing of the application code and hides the encryp-
tion method, making the bootloader a firewall. The bootloader must not only prevent access to
information already loaded, but must also prevent a hostile agent from loading unauthorized rogue
software. An example would be capturing a working PINpad or ATM, erasing its software, and
loading new software designed to collect PIN numbers from unwitting users. Therefore, all com-
munication between the bootloader and host system must be encrypted to prevent interception and
decoding by hostile agents.

DS5250—putting it all together

It is possible to build an embedded system with
SRAM for program and data storage by using
encryption. The DS5250 secure microcontroller
is an example of such a system (Figure 3). It
executes up to 6.25 million 8051-based instruc-
tions per second, storing its program and data
memory in up to 8MB of external SRAM. The
most sensitive information can be stored in 5kB
of internal data memory. Data retention of the
SRAM is handled through dedicated battery
switching hardware inside the microprocessor
that supplies either VCC or battery power to the
external memory. Such a system can be attached
to authentication peripherals such as ISO-7816-
compliant smart-card readers, fingerprint scan-
ners, and keypads.

Dedicated encryption/decryption engines on the program and data buses ensure the security of the
external bus. The DS5250’s program memory bus is 8-byte block-encrypted with either single or
3DES. The data memory bus is optionally encrypted in real-time with dedicated hardware. Key gen-
eration is aided by a true random-number generator that passes the statistical random-number gen-
erator tests as described in Section 4.11.1 of the Federal Information Processing Standards
Publication 140-1 (FIPS PUB 140-1), Security Requirements for Cryptographic Modules. A program
memory integrity-check feature further increases memory security by comparing the checksum of
individual blocks against a previously calculated value. The failure of the block checksum to match
the stored value evokes a user-programmable tamper response, preventing substitution attacks.

In addition to NV SRAM support, the DS5250 incorporates many system security features. A high-
performance 4096-bit modulo-arithmetic accelerator (MAA) unit powers RSA calculations with a
modulo exponentiation of 1024 bits in under 6ms. An additional 5kB of internal SRAM can be used
for secret key storage, data memory, and/or program memory, and as scratchpad memory for the
MAA. Application software is securely loaded through the serial port using a bootloader chal-

Figure 3. The DS5250 exe-
cutes up to 6.25 MIPS and
stores program and data
memory in up to 8MB of
external SRAM.

FINGER-
PRINT

SCANNER

PINpad

/6

/8

/8

/8

/8

CARD
READER

VCC
VCCO

SRAM
DATA

UP TO
4MB

UP TO
4MB

SRAM
CODE

SELF-DESTRUCT
INPUTS

BATTERY CONTROL

TAMPER
SENSORS

38
 B

ID
IR

EC
TI

ON
AL

 I/
O

PR
OG

RA
M

EN
CR

YP
TO

R/
DE

CR
YP

TO
R

DA
TA

EN
CR

YP
TO

R/
DE

CR
YP

TO
R

4096-BIT
MODULO-ARITHMETIC

ACCELERATOR

5kB SRAM
(PROGRAM/DATA)

REAL-TIME
CLOCK

4-CLK/MC
CORE

BOOTSTRAP
LOADER ROM

DS5250

For more information
about EMV Integrated
Circuit Card Specifi-
cations for Payment
Systems, go to
www.emvco.com.

SRAM is the fastest of
all memory technolo-
gies and can be instan-
taneously erased or
“zeroed” as part of a
tamper response.

11

lenge/response protocol based on a chain-cipher, dual-key 3DES encryption
algorithm. Alternately, the DS5250 allows the system designer to create appli-
cation-specific bootloader software that takes advantage of all the microcon-
troller’s security features.

Internal tamper sensors can detect physical attacks on the microprocessor die
and initiate a tamper response, erasing the encryption keys used to decode
external memory. User-defined sensors or switches can be connected to self-
destruct input pins that have the same tamper response but also destroy any data
stored in the internal code/data RAM memory. Additionally, the self-destruct
input removes all power to the SRAMs, ensuring all program and data memo-
ry loss. A self-destruct interrupt source, wired to an external pin, allows the sys-
tem software flexibility to create a custom tamper response based the needs of
a particular implementation. The DS5250 secure microcontroller chip, howev-
er, has a self-contained cryptographic boundary that is tamper reactive, thus
reducing system cost by eliminating the need for additional tamper response.
Figures 4A and 4B contrast a common security approach with the DS5250
approach.

Keeping it safe and secure

Every financial terminal, whether it is a PINpad, a POS terminal, or an ATM,
processes confidential information that resides in its RAM and ROM. This
makes the memory components critical in the security of the financial transac-
tion. As hackers grow more sophisticated, so too must the security methods
used to protect confidential information. Although there are many levels of pro-
tection, encrypted SRAM offers the best protection for embedded memory con-
tents.

Perhaps most importantly, the DS5250 secure high-speed microcontroller
protects sensitive information and maintains the trust of payment systems to
meet financial industry regulations. When necessary, it will unconditionally
erase private keys, programs, and data as a tamper response, keeping data safe
and secure.

Figure 4B. The DS5250
secure microcontroller has
a self-contained crypto-
graphic boundary that is
tamper reactive, thus
reducing system cost by
eliminating the need for
additional tamper
response.

PHYSICAL ENCLOSURE/CASE

SECURE PROCESSOR BOARD

CRYPTOGRAPHIC BOUNDARY

SRAM

DISPLAY

KEYPAD

CARD
READER RTC

PHYSICAL ENCLOSURE/CASE

SECURE PROCESSOR BOARD

DS5250

DISPLAY

KEYPAD

CARD
READER

SRAM

CRYPTOGRAPHIC BOUNDARY

RTC

Figure 4A. Embedded sys-
tem designers are often
tempted to build a secure
computer using a general-
purpose microcontroller with
associated peripherals/mem-
ory, wrapping the PC board
in multiple, expensive tamper
sensors.

References:

1. Smith, Sean; Palmer, Elaine; Weingart, Steve. Using a High-Performance,
Programmable Secure Coprocessor. Proceedings of the Second International Conference
on Financial Cryptography, Springer-Verlag Lecture Notes in Computer Science, 1998.

2. J. D. Tygar and B. S. Yee. Dyad: A System for Using Physically Secure Coprocessors.
Proceedings of the joint Harvard-MIT Workshop on Technological Strategies for the
Protection of Intellectual Property in the Network Multimedia Environment, April 1993.

3. A variety of sources discuss this subject, and can be found via a web search engine using
the keywords “EPROM,” “plastic,” and “acid.”

4. RSA Laboratories. PKCS #1 v2.1: RSA Cryptography Standard, Bedford, Massachusetts,
2002.

12

Creating networked multimedia
applications with the DS80C400
Impressive multimedia applications—including public address (PA) systems, networked doors,
MP3 players, and security cameras—can be built using a low-cost, networked microcontroller. This
article discusses how to use the DS80C400 networked microcontroller in example systems using
audio and video.

Building a networked PA system

Picture a PA system (also called “overhead paging”) where an operator announces messages such as
“Attention all employees: The fire alarm is in test,” or “Supervisor, please report to the chemical
dock.” This setup uses separate cabling and infrastructure, and is often built on technology that was
available before the transistor. Imagine moving the system to the network. Not only can separate
audio cabling be eliminated, but the system can also be made intelligent. For example, the paging
system could interface to the building’s access control system or a network server, which knows the
most likely location of an employee. A computerized PA system can also automatically repeat a mes-
sage, freeing an operator to take more calls. Additionally, the system could tap into the company-
wide email system and allow for an email-to-voice service, or use a website where paging requests
could be entered and then announced without further human intervention.

How do you build a networked PA system? First, start with at least one server that runs the web
interface, email gateway, and has a microphone or something similar. We will call this server “mas-
ter control.” Next, you need a number of speaker modules. These modules are networked units with
a digital-to-analog converter (DAC) to drive a speaker. The price for these speaker units must be kept
low, and the units must be extremely easy to install in the field.

Figure 1 shows a network sketch with two buildings, seven speaker units, and one master control
server. A router, not a bridge, connects the networks of the example buildings. (This has an impor-
tant consequence for the software, described later in this article.) In our example, the DS80C400
networked microcontroller drives the speaker units. Even though a microcontroller does not have
the processing power and memory resources of the latest PC systems, a PA system is

neither bandwidth nor processing
intensive. Uncompressed monaur-
al audio sampled at 22.05kHz x 8
bits consumes less than 180kbps,
and renders excellent voice quali-
ty. There is also no cost for hard-
ware decompression.

Figure 2 illustrates the relative
bandwidth requirements of a net-
worked audio system. Even on an
old (half duplex) 10Mb network
with an effective 5Mbps band-
width, the audio application uses
less than 4% of that bandwidth.
Most Ethernet networks today are
at least 100Mbps.

Speaker hardware

Apart from the DS80C400, a
speaker module requires some
memory (512kB of SRAM is suf-
ficient), a network PHY, DAC,

latigid

MASTER CONTROL
SERVER

ETHERNET

ROUTER

ETHERNET

BUILDING M

BUILDING L

Figure 1. A network-based
PA system can span multiple
buildings.

...the DS80C400 can
transmit four frames of
raw black and white
video (240 x 180) per
second without any
hardware-assisted
image compression.

13

amplifier, and speaker. Refer to Application Note 609: Internet Speaker with the
DS80C400 Silicon Software (available at www.maxim-ic.com/appnoteindex) for a
complete working description.

The following technologies simplify installation and code distribution:

• DS80C400 NetBoot (see Networked Application Update on the
DS80C400)

• DHCP to eliminate IP configuration, lowering installation and
configuration cost

• Power-over-Ethernet (see Power-over-Ethernet) to simplify
cabling and reduce material cost

Upon power-up, the DS80C400 ROM requests an IP address using DHCP, then
queries the network for the latest version of the application. The application is then
executed, and the system is ready to receive the audio data. A new speaker module can
be installed in the field by locating an unused network port and connecting the cable.

Speaker software

The software does extra work for easy hardware installation. Because there is a router between
buildings (Figure 1), broadcast messages cannot get from one building to the other. Therefore,
simple broadcast messages cannot be used. A new speaker must send multicast messages (see
Multicasting) until master control confirms the speaker’s location and parameters. A new speaker
system does not know the location of the master control beforehand, and consequently sends out
multicast messages asking master control to identify itself. If security is an issue, this exchange

MAX AVAILABLE BANDWIDTH
ON A 10Mb NETWORK

0.25Mbps

5Mbps

MAX BANDWIDTH USED BY PA APPLICATION

10Mbps

Figure 2. The bandwidth
requirements for networked
audio are very low com-
pared to the available
bandwidth of Ethernet
networks.

Networked Application Update on the DS80C400

The DS80C400 is equipped with network boot capabilities, a convenient way to load code into a
fresh part. “NetBoot” can be invoked using the N command in the serial loader. It supports SRAM
and flash memories.

The use for network booting goes beyond manually loading new parts. On a design without
nonvolatile memory, such as flash, it is the easiest way to install an application after a power
loss. NetBoot can also automatically check the network for code updates and install them (pro-
ceeding with the previously loaded “old” code if the network is unavailable). NetBoot uses the
DHCP and TFTP network protocols to acquire an IP address and load program data. The net-
work configuration can also be statically set and stored in a 1-Wire device. Address support
includes IPv6 addresses.

The following steps are required to set up automatic network code update for the TINI400 evalu-
ation module/socket. (Refer to the High-Speed Microcontroller User’s Guide: DS80C400
Supplement at www.maxim-ic.com/microcontrollers for additional details, including the types of
supported 1-Wire devices.)

1) Make sure a DHCP server is available on the network, or allocate a static IP address and
record it in the 1-Wire device.

2) Install a TFTP server (e.g., tftpd) and either publish its IP address using DHCP or record
the address in the 1-Wire device.

3) Upload the code onto the TFTP server in tbin2 format, under the file name TINI400.

4) Set the NetBoot jumper on the TINIs400.

5) Every time the system is reset, it will now automatically reload or update the code from the
TFTP server.

14

can be digitally signed to remove rogue systems claiming to be servers. Once configured using
classic unicast messages, the speaker joins a multicast group and waits for audio packets. These
audio packets are multicast from master control. The example software for the networked PA sys-
tem was written in C (see Developing for the DS80C400). The following code can receive networked
audio over a multicast socket.

#define MULTICAST_IP_MSB 239
#define MULTICAST_IP_2 192
#define MULTICAST_IP_3 0
#define MULTICAST_IP_LSB 22
#define MULTICAST_PORT 6789

int s; /* socket handle */
struct sockaddr address; /* IP address */
unsigned char xdata buffer[1600];

/* Step 1: Create the socket */
s = socket(PF_INET, SOCK_DGRAM, 0);
/* Step 2: Join the multicast group */
memset(address, '\0', sizeof(address));
address.sin_addr[12] = MULTICAST_IP_MSB;
address.sin_addr[13] = MULTICAST_IP_2;
address.sin_addr[14] = MULTICAST_IP_3;
address.sin_addr[15] = MULTICAST_IP_LSB;
address.sin_port = MULTICAST_PORT;
join(s, &address, sizeof(struct sockaddr));

/* Step 3: Listen for incoming packets */
memset(address, '\0', sizeof(address));
address.sin_port = MULTICAST_PORT;
bind(socket_handle, &address, sizeof(struct sockaddr));

/* Step 4: Now we’re ready to receive data */
recvfrom(s, buffer, 1600, 0, &address, sizeof(struct sockaddr));
/* We actually received data! We could play it. */
printf("Data received:\r\n");
...

With the exception of join(), these steps should be familiar to programmers who wrote code for
TCP/IP networks. The function calls are very similar to Posix and Winsock. (Note: xdata is a Keil
C keyword that tells the compiler where to allocate data.) On the DS80C400, join() and
leave() initiate or terminate membership in a multicast group, respectively. All library calls—
bind(), recvfrom(), etc.—in this and the following examples return status codes. Unlike the
code in the abridged examples, it is preferable to check these return codes for errors and respond
accordingly.

A networked PA system
could interface to a
building’s access control
system or network
server, know the loca-
tion of an employee,
automatically repeat
a message, or use a
website where paging
requests are entered
and announced
without further human
intervention.

Power-over-Ethernet

Attaching a device to the network can have a downside—it adds an extra cable for the network.
Fortunately, the power supply can be integrated into spare wires of the Ethernet cable. There are
several solutions to the problem, most commonly the IEEE802.3af standard calling for a 48V
supply on pins 7, 8 (+) and 4, 5 (GND) of the 8-pin Ethernet connector. A 48V supply is com-
monly used in telephony applications, and thus often readily available in cabling cabinets.

For use with microcontrollers, the supply has to be regulated down to suitable levels. Refer to
www.maxim-ic.com/appnoteindex for application notes describing the use of the MAX5910 and
MAX5014 to build an efficient IEEE802.3af-compliant circuit.

15

Text-to-speech

Using a microphone to capture live speech or playing canned audio stored on a network server is one
way to use the PA system. Another use announces messages received in text form through
email, from a web page, or by using the short message service on cell phones.

Retrofitting speech synthesis to the system is easy. The conversion can be done directly on the mas-
ter control server, using a text-to-speech engine to generate waveform audio from the input text. The
waveform can then be transmitted to the speakers like any other audio; changes to the speaker mod-
ules are not required.

Text-to-speech engines are widely available, and are an integral part of operating systems such as
Mac OS X. A free Java speech engine can be found at freetts.sourceforget.net/. Commercial solu-
tions sound more natural, so try the “Vocalizer” demo with American, British, and Australian accents
on www.nuance.com.

Entertainment grade audio

CD audio poses a problem if the samples are transmitted in uncompressed form. Raw stereo sam-
ples at 44.1kHz x 16 bits would require 1.4Mbps of network bandwidth (or almost 30% of the 10Mb
network), permanently exceeding the available bandwidth of many networks.

Compression algorithms such as MP3 can reduce the data rates, and therefore the network load ten-
fold and make the system feasible. Paired with a hardware decompression chip, the DS80C400 can
easily manage the task. In fact, a clock rate of about 36MHz is fast enough to seamlessly play 192kb
MP3s. The TINI MP3 project at www.mp3elf.net is a network MP3 design based on Dallas micro-
controllers. Schematics and a full-blown multimedia application are also available.

Images

A video source can also be connected to the DS80C400. Such a system could be very useful as a
security camera, where an inexpensive camera takes a snapshot every second and transmits it over
the network for display and storage. Post-processing on the server side can perform motion detec-
tion and alert security personnel.

Good camera choices are those with modern cell phones—they are not only small, but also in
expensive and widely available. Most use a serial protocol for communication, but details vary
among manufacturers. Be sure you have all required technical information before committing to
a particular camera make and model.

Network Camera
System Example:
An example network
camera system, sche-
matics, and code are
available at ftp://ftp.
dalsemi.com/pub/tini/
ds80c400/reference_
designs/netcam/.

Multicasting

The DS80C400 ROM and the TINI runtime support multicasting. Unlike unicast packets sent
from one source to only one destination, multicasting allows several destination hosts to receive
the same data, saving bandwidth by eliminating duplicate traffic. Multicast differs from simple
broadcast. Using the IGMP protocol, a host can subscribe to one or more multicast groups, and
multicast traffic gets routed only to those parts of the network with at least one recipient. Unlike
broadcast messages that require the bridging of networks, routers forward multicast messages.

On the network, multicast packets use a special class of destination IP addresses, also called the
multicast group. From an application perspective, adding multicast support is trivial. A call to
join() adds the host to the multicast group, and packets are received like any other UDP traf-
fic. Good manners dictate to leave() a group when reception is no longer desired. (A host
sends periodic membership reports after joining at least one multicast group. If the host crashes
without leaving the groups, the group memberships eventually expire.) When choosing a multi-
cast group for your own applications, make sure to avoid duplicate group allocations by fol-
lowing the guidelines in RFC 2365.

16

Experimentation shows that the DS80C400 can transmit four frames of raw black and white video
(240 x 180) per second without any hardware-assisted image compression and with some headroom
that could be used for speech-quality audio.The following code sample opens a TCP connection to
a network server to transmit a picture. (Even though we show the closing of the connection, the real
application keeps the connection open to reduce overhead.)

int s; /* socket handle */
struct sockaddr address; /* IP address */
unsigned char xdata buffer[1600];

/* Step 1: Create the socket */
s = socket(PF_INET, SOCK_STREAM, 0);

/* Step 2: Fill in the target address 192.168.0.11 */
memset(address, '\0', sizeof(address));
address.sin_addr[12] = 192;
address.sin_addr[13] = 168;
address.sin_addr[14] = 0;
address.sin_addr[15] = 11;
address.sin_port = 8080; /* Target port */

/* Step 3: Connect to the server */
connect(s, &address, sizeof(address));

/* Step 4: Send the data in buffer */
send(s, buffer, sizeof(buffer), 0);

/* Step 5: Close the connection */
closesocket(s);

For those familiar with Unix network programming, closesocket() is close(). The
DS80C400 version of the close() function is used by the file system. Like Windows systems,
socket handles are not interchangeable with file handles on the DS80C400, and a separate function
for sockets must be used.

The camera system clocks the DS80C400 at 73.7MHz, close to the 75MHz limit. The 73.7MHz
frequency is generated using a fundamental mode crystal with an 18.432MHz frequency, and the
PLL is integrated into the DS80C400 to multiply the frequency by four. This design reduces the
overall system cost, while still allowing operation near the high end of the microcontroller’s
maximum frequency. In addition, 18.432MHz x 4 is also a good baud-rate generator for asyn-
chronous serial communication.

Networked door

It is easy to combine the concepts of a security camera with bidirectional audio, a button, and a
buzzer. This system allows us to build a networked door (Figure 3). The applications are endless,
especially when combined with access control and security logs.

For the DS80C400 the button and buzzer are just peripherals that can be hooked up to a plain I/O
port. In Keil C, I/O ports can be easily defined using sfr and sbit:

/* Define port 1 */
sfr p1 = 0x90;
/* Define P1.7 (port 1 is bit addressable) */
sbit p1_7 = p1^7;

/* Toggle P1.7 */
p1_7 = !p1_7;

17

Using iButtons and the 1-Wire master interface built into the
DS80C400 makes adding authentication to the network door easy.
(This interface is somewhat more complex to program, so Dallas
Semiconductor provides libraries to simplify this task.) Refer to
www.ibutton.com/TINI/applications/lock/ for an example showing
how to connect a motorized door strike plate.

A final note: a system such as the networked door probably uses mul-
tiple processes (or tasks). The DS80C400 ROM contains a task sched-
uler. The following examples show how it can be used from C. Again,
return codes should be checked in industrial-grade applications.

unsigned char pri, task;

/* Get the current task */
task = task_getcurrent();

/* The current task’s priority */
pri = task_getpriority(0);

/* Decrease the priority */
task_setpriority(0, pri-1);

/* Sleep */
task_sleep(0, 0, 500);

The programming model also contains useful functions such as task_fork(), which creates a
new task by duplicating the current task. task_kill() destroys a task and task_suspend()
puts a task on hold. These and other features are described in the High-Speed Microcontroller User’s
Guide: DS80C400 Supplement on the website.

Conclusion

A small and inexpensive networked microcontroller can be the powerful heart of interesting and use-
ful multimedia applications. We encourage readers to use the DS80C400 to reproduce or refine the
ideas presented in this article. For free samples, visit www.maxim-ic.com.

AUDIO

IMAGES

AUTHENTICATION

Figure 3. A networked door
interface combines video,
audio, and access control.

Developing for the DS80C400

Software applications for the DS80C400 can be developed in a variety of ways. For rapid proto-
typing, consider using Java and the TINI runtime environment. For applications where every cycle
counts, hand-optimized assembly language is best.

For this article we use C. The Keil C compiler (www.keil.com) supports the 24-bit contiguous
mode of the DS80C400 (refer to Application Note 606: Configuring Keil PK51 Tools to Support
24-Bit Contiguous Addressing Mode), allowing up to 16MB of code/data space. To use this mode,
the eXtended versions of compiler and linker (CX51, LX51) are required. These tools are part of
the Professional Developer’s Kit (PK51).

Dallas Semiconductor provides C libraries that interface to the built-in DS80C400 network stack.
The libraries and an illustrated step-by-step guide detailing how to create projects for the
DS80C400 using the Keil development environment can be found on the Dallas Semiconductor
ftp site, ftp://ftp.dalsemi.com/pub/tini/ds80c400/. These libraries greatly sim-
plify network programming. For example, the creation of a TCP connection is reduced to the uni-
versally known sequence of socket() and connect(). For technical support, join the TINI
mailing list at lists.dalsemi.com.

18

Using the DS5240/DS5250 as
drop-in upgrades for the DS5002
The DS5240 and DS5250 high-speed secure microcontrollers in the 80-pin quad flatpack (QFP)
package are pin-compatible, high-performance upgrades for the DS5002FP. Because the DS5240/
DS5250 support the same feature set as the DS5002, they can be used as drop-in replacements for
the DS5002FP in existing designs. Software written for the DS5002FP ports to the DS5240/
DS5250 with few or no changes required, easily improving system performance and security
while enabling the features available in the DS5240/DS5250 (Table 1).

Performance

The DS5240/DS5250 have higher maximum clock frequencies and require fewer clocks-per-
machine cycle than the DS5002FP. Their streamlined cores execute single-byte instructions in
only four clock cycles instead of the DS5002FP’s 12 clock cycles.

A 1kB instruction cache reduces the effect of program memory encryption on execution speed, so
that even with 3DES encryption active, the DS5240/DS5250 show an average 2.5X performance
improvement over a DS5002FP operating at the same clock frequency.

DS5002FP DS5240 DS5250 FEATURES

PERFORMANCE

16MHz 25MHz 33MHz Maximum clock frequency
12 4 Clocks-per-machine cycle

25.2 8.4* Average clocks per instruction
0.63 3.0* 3.9* Average MIPS

SECURITY
80-bit proprietary
algorithm (single

byte)

Single DES or 3DES
(8-byte block)

Encryption of data in program memory
(decrypted in parallel with program
execution)

No Yes
Separate encryption for program and
MOVX memory

None
4096-bit MAA engine (1024-bit public key
modular exponentiation in under 650ms)

Public key cryptography support

SDI pin
SDI pin;

No battery/battery attach;
Low temperature (<60°C)**

Destructive reset (DRS) triggers

No Yes (optional) Timed access on port write
48 bytes 1024 bytes Vector RAM

No Yes Unique laser ID
No No Yes Secure loader

FLEXIBILITY

1x, idle, stop

1x, idle, stop;
2x/4x (crystal multiplier);
Divide by 1024 (PMM);
Internal ring oscillator

Oscillator clock modes

1 2 Serial ports
2 3 Timers
2 6 External interrupts

No Hardware only
Hardware and loader

ROM
Flash memory support

No Yes** Real-time clock

*Zero stretch cycles, 16-bit standard addressing mode.
**100-pin QFP only.

Few or no changes are
required to port
DS5002FP software to
the DS5240/DS5250.

Table 1. DS5002FP, DS5240, and DS5250 features

19

Security

DS5240/DS5250 external program memory is automatically secured using either single DES or
3DES encryption; data memory can optionally be encrypted. As with the DS5002FP, encryption
keys are generated and loaded automatically from the on-board random-number generator. The
DS5240/DS5250 improve security by using separate keys for program and data memory encryption,
and by using an 8-byte block encryption for program memory instead of encrypting it byte-by-byte.

In addition to DES and 3DES, the DS5240/DS5250 include a 4096-bit MAA engine to support
public key encryption algorithms such as RSA. The expanded on-chip vector RAM (1024 bytes
vs. 48 bytes for the DS5002FP) provides more space to store critical data and code, such as inter-
rupt and reset handlers.

To protect the internal and external memory, the DS5240/DS5250 trigger a destructive reset
(DRS) based on several conditions. As on the DS5002FP, a signal on the SDI pin clears the mem-
ory encryption keys, vector RAM, and any external battery-backed memory. Additionally, the
DS5240/DS5250 trigger a DRS in response to a missing or newly attached battery.

The DS5240/DS5250 programmable evasion features protect against trial-and-error attacks that
involve an abnormal number (user-selected) of resets within a short time. When enabled, this
security mode responds to a repeated reset attack with increasing delays according to a user-select-
ed time. Depending on the number of resets encountered, the delay time before execution resumes
can increase from seconds to hours to weeks. At the highest security level, the DS5240/DS5250
can respond to a brute-force attack by locking execution permanently inside the ROM, rendering
the part unusable until it is completely erased.

Another countermeasure against attacks is optional timed-access restriction on all output port
writes. This increases the instruction bytes an attacker would have to encrypt correctly to write a
recognizable pattern to an I/O port.

Flexibility

The DS5240/DS5250 provide an expanded set of on-chip resources over the DS5002FP, which
increases flexibility for application and system design. In addition to the increased 1kB of vector
RAM, the DS5240/DS5250 provide 4kB of internal SRAM that can be used as program memory,
data memory, or both. Of this internal SRAM, 1kB can optionally be used as an extended stack.

For clock control and power management, the DS5240/DS5250 provide many features beyond the
standard stop and idle modes supported by the DS5002FP. The clock multiplier allows the exter-
nal crystal frequency to be doubled or quadrupled internally, expanding the range of crystals used
to generate a given clock rate and allowing external EMI to be reduced. Power-management mode
(PMM) divides the external crystal frequency by 1024 for reduced power consumption during
periods when full-speed operation is not required. If rapid response to a serial input or interrupt is
required during PMM, the switchback feature can be used to automatically revert to full-speed
operation in response to these inputs. Instead of an external crystal input, an internal ring oscilla-
tor, which operates at approximately 12MHz, allows rapid exit from stop mode without waiting
for the crystal oscillator to warm up.

Dual data pointers on the DS5240 improve performance of block copying operations in external
memory. The INC DPTR instruction can be set to either increment or decrement the active data
pointer, and the bit that determines which data pointer is active can be set to toggle automatically
following certain data transfer operations.

Requirements for upgrading a design to the DS5240/DS5250

The DS5240/DS5250 provide all but two DS5002FP features. These features are:

• The DS5240/DS5250 perform all access to external memory (or memory-mapped I/O) using the
dedicated data bus (BA14–BA0 and BD7–BD0). Accessing memory using a multiplexed
address/data bus on ports 0 and 2 is not supported.

The DS5240/DS5250
provide 4kB of internal
SRAM that can be used
as program memory,
data memory, or both;
1kB of SRAM can
optionally be used as an
extended stack.

The DS5240/DS5250
programmable evasion
features protect against
trial-and-error attacks
that involve an abnor-
mal number (user-
selected) of resets
within a short time.

20

• The DS5240/DS5250 do not support the
reprogrammable peripheral controller
(RPC) mode.

If the design relies on one of these features,
it must be changed to use the DS5240/
DS5250.

Additionally, the timing requirements for the
external RAM(s) accessed through the dedi-
cated data bus changed slightly from the
DS5002FP to the DS5240/DS5250. An AC
timing analysis will verify that the RAM and
the DS5240/DS5250 are compatible, partic-
ularly if the DS5240/DS5250 run beyond
the DS5002FP’s maximum 16MHz.

Porting software from the
DS5002FP to the DS5240/DS5250

The DS5002FP and the DS5240/DS5250
share the same instruction set, and most of
the special function registers (SFRs) in the
DS5002FP have the same location and
function in the DS5240/DS5250. However,
a few changes may be required when port-
ing existing DS5002FP software to the
DS5240/DS5250.

Memory configuration

The DS5002FP and the DS5240/DS5250
(80-pin QFP only) support two types of
external memory configurations when
accessing memory through the dedicated
address bus.

Figure 1’s multiple-chip configuration
shows the MSEL pin connected to VCC
and four 32kB x 8 SRAM devices are con-
nected to the dedicated bus. Two devices
(enabled by CE2 and CE1) are mapped as
64kB of program memory, and the other
two (enabled by CE4 and CE3) are
mapped as 64kB of data memory. To
select this configuration, use the following
SFR settings:

• ACON.1 (AM1) and ACON.0 (AM0) should be set to 0 to select 16-bit addressing mode (for
compatibility with existing software).

• MSIZE should be set to 00h to select the 32kB chip size. Note that this register can only be set
in ROM-loader mode or user-loader mode.

• MCON.1 (PM) should be set to 1 to select nonpartitioned mode.

• Program memory is automatically encrypted; the PBCC.0 (TDESE) bit selects whether single
DES (TDESE = 0) or 3DES (TDESE = 1) encryption is used for program memory. This bit can
only be set in ROM-loader mode or user-loader mode.

28

27

20

28

27

20

28

27

20

28

27

20

12

10

74

2

63

62

14

22

VCC

WE

CS

D7–D0

GND

A14–AO
OE

32k x 8
SRAM

22

VCC

WE

CS

D7–D0

GND

A14–AO
OE

32k x 8
SRAM

22OE

VCC

WE

CS

D7–D0

GND

A14–AO

VCC

WE

CS

D7–D0

GND

A14–AO

32k x 8
SRAM

22OE

32k x 8
SRAM

14

14

14

VCC

+3V

13

54
+5V

52

14

VLI

PORT0

PORT1

PORT2

PORT3

GND

VCCO

R/W

CE1

CE2

CE3

BA14–BA0

BD7–BD0

+5V

MSEL

CE4

DS5001FP/DS5002FP

Figure 1. In the multiple-
chip memory configuration
external program and data
memory are split across four
32kB x 8 SRAM devices.

21

• DMOS.1 (C3EE) and DMOS.2 (C4EE) should be set to
1 if data memory encryption is desired. Each of these
bits controls encryption on one memory device.

In the single-chip configuration (Figure 2), the MSEL pin
is connected to ground and a single 128kB x 8 SRAM
device is connected to the dedicated bus. This device
(enabled by CE1) is used for program and data memory,
and CE2 and CE3 are converted into two additional address
lines. To select this configuration, the following SFR set-
tings should be used:

• ACON.1 (AM1) and ACON.0 (AM0) should be set to 0 to
select 16-bit addressing mode (for compatibility with
existing software).

• MSIZE should be set to XX001001b to select the 128kB
chip size. Note that this register can only be set in ROM-
loader mode or user-loader mode.

• Program memory is automatically encrypted; the PBCC.0 (TDESE) bit selects whether single
DES (TDESE = 0) or 3DES (TDESE = 1) encryption is used for program memory. This bit can
only be set in ROM-loader mode or user-loader mode.

• Data memory is automatically encrypted.

Handling interrupts

Five of the six interrupt sources supported by the DS5002FP are supported identically on the
DS5240/DS5250. The power-fail interrupt is also supported on the DS5240/DS5250, but with
the following differences:

• The power-fail interrupt vector is located at 33h instead of 2Bh; its priority level (0, the
highest) remains unchanged.

• The enable bit for this interrupt is located at WDCON.5 (EPFI).

• The flag indicating that a power-fail event has occurred is located at WDCON.4 (PFI).

Determining reset sources

On the DS5002FP, the POR bit (PCON.6) is cleared when a power-on reset occurs, and this bit
can be checked by software to determine the cause of a reset. On the DS5240/DS5250, the POR
bit (WDCON.6) performs this function; however, this bit is set (not cleared) when a power-on
reset occurs. Both bits require timed-access writes to be reset by software.

Watchdog control

The watchdog functions the same on all parts. The following changes and additions apply, how-
ever, when controlling the watchdog on the DS5240/DS5250:

• The watchdog-enable bit is located at WDCON.1 (EWT).

• The watchdog-reset bit is located at WDCON.2 (RWT).

• The flag indicating that a watchdog timer reset has occurred is located at WDCON.2 (WTRF).
Unlike the WTR bit on the DS5002FP, this bit must explicitly be written to 0 to be cleared.

• A watchdog interrupt (vector 63h) is available on the DS5240/DS5250. This interrupt, if enabled
by the EWDI (EIE.4) bit, triggers before the watchdog reset occurs, allowing the watchdog

The DS5240/DS5250
streamlined cores exe-
cute single-byte instruc-
tions in only four clock
cycles instead of the
DS5002FP’s 12 clock
cycles.

12

10

74

2

63

30

22

14

16

31

2

20

27

28

128k x 8
SRAM

VCC

WE

CS1

A16

A15

A14–AO

D7–D0

GND

CS2

CE

VCC

+3V

13

54

+5V

52

VLI

PORT0

PORT1

PORT2

PORT3

GND

VCCO

R/W

CE1

CE2

CE3

BA14–BA0

BD7–BD0

MSEL

DS5001FP/DS5002FP

Figure 2. In the single-chip
memory configuration, one
128kB x 8 SRAM device
holds external program and
data memory.

22

timeout to be handled by software if desired. The WD1–WD0 (CKCON.7–6) bits on the
DS5240/DS5250 control the time periods for the watchdog interrupt and reset, but the reset
time defaults to roughly the same value as on the DS5002FP.

Random number generation

The random number register (RNR) functions the same in all three parts. However on the
DS5240/DS5250, the bit indicating that a new random number is ready is located at RAMST.0
(RNRF). The time required to generate a new random number on the DS5240/DS5250 is approx-
imately 30ms.

CRC operations

The DS5240/DS5250 support a new CRC-32 calculation function, and the process to calculate a
CRC-16 value is different.

• The DS5240/DS5250 do not have CRC (C1h), CRCLow (C2h), and CRCHigh (C3h) registers.

• To perform a CRC-16 calculation, first select CRC-16 mode by clearing the CRCNT
(RAMST.1) bit to 0. Then write the CRC data values to the CRC1 (B1h) register, allowing at
least five machine cycles (or three NOPs between writes) to give the CRC registers time to set-
tle. Once the last value is written, the CRC-16 value can be read from CRC2:CRC1.

• It is no longer necessary to write the CRC LSB byte back into the engine twice to clear the CRC
registers. On the DS5240, writing any value to CRC2 automatically clears CRC1, CRC2,
CRC3, and CRC4 to 0.

Power-management
mode (PMM) divides
the external crystal
frequency by 1024
for reduced power
consumption during
periods when full-
speed operation is
not required.

Table 2. DS5240/DS5250 new feature summary (80-pin QFP only)

FEATURE SFRS

Timer 2

CKCON.5 (T2M)—Clock Mode Select
P1.1 (T2EX), P1.0 (T2)—External Inputs
T2CON—Flags and Mode Control
T2MOD—Mode Control
TH2, TL2—Timer Count MSB/LSB
RCAP2H, RCAP2L—Timer Capture MSB/LSB

Data Pointers
DPH1, DPL1—Data Pointer 1 MSB/LSB
DPS—Data Pointer Select

CRC-32
RAMST.1 (CRCNT)—CRC 16/32 Select
CRC1, CRC2, CRC3, CRC4—I/O Registers

DES Engine
UDESC—DES Engine Control
UDESD—DES Engine Data Input/Output

Modular Accelerator Engine
MAS0, MAS1—Operation Size Select
MACT—Accelerator Control Register

User Loader Mode
ACON.6 (ULME)—User-Loader Mode Enable
PEK1, PEK2, DEK, ROMST, PBCD,
PBCC—Encryption/Loading Control

Laser ID BP—Bootloader Password Register
Crystal Multiplier and Power Management PMR—Power Management Register

Extended 1kB Stack
ESP—Extended Stack Pointer
RAMST.5, RAMST.4—RAM1 Mode Select

Output Port Timed-Access Protection RAR.3 (TAP)—Timed-Access Port Enable

23

Conclusion

Many new DS5240/DS5250 features can be used without any hardware changes. Table 2 summa-
rizes these new features and the SFRs that control them.

The DS5240/DS5250 feature sets increase security, performance, and flexibility over the
DS5002FP. With only a few changes required to port software to the DS5240/DS5250, upgrading
a DS5002FP design is easy.

Upgrading designs to the 100-pin QFP

The DS5240/DS5250 in the 100-pin QFP package provide all the features of the 80-pin package
except for pin-for-pin compatibility with the DS5002FP and support for the DS5002FP modes of
memory interfacing. They also provide the following features:

• Expanded memory-interfacing options, up to 8MB of program and data memory and 4MB of
memory-mapped I/O.

• On-board RTC (driven by an external 32.768kHz crystal) useful for time stamping and self-
imposed expiration dates.

• Temperature sensor that can trigger a DRS in response to a low-temperature attack.

• An additional SDI input pin that can be wired to an interrupt to allow a software-controlled tam-
per response.

• Hardware support for external flash memory (loader ROM support included on the DS5250).

For more information

An overview of the DS5240 and DS5250 high-speed secure microcontrollers is available
online at www.maxim-ic.com. The confidential data sheets and user’s guides require a non-
disclosure agreement (NDA) prior to distribution. Contact Maxim/Dallas Semiconductor
Customer Service for more information.

